Database Schema Independent Architecture for NL to SQL Query
Conversion

Saima Noreen Khosa
NCBA&E
saimakhosa@yahoo.com

Abstract

NL (Natural Language) to SOL (Structured Query
Language) query conversion overcomes
communication gap between databases and non-
technical user. It is very easy way to write question in
NL and system automatically convert this question
into a SOL query and show result to the user. Here
we propose the database schema independent
architecture for NL to SQL query conversion. User is
free to give input in its own way in English. System is
not restricted user to give input in a specific pattern.
Existing proposed solutions are usually schema
naming structure dependant and does not apply other
than their specific schemas, but we propose a generic
architecture which is independent of any particular
schema and rather work on all schemas uniformly
within the defined scope of the proposed architecture.

1. Introduction

For many long time computer programmers try to
overcome the communication gap between causal
user and computer. In most of places computer are
used for sorting data and retrieval (according to the
need and requirement of the user). During last
decades there is lots of work done in NL (Natural
Language) to SQL (Structured Query Language)
conversion. NL is a natural language which is used in
a daily life for the communication between human.
And SQL is a query Language which is used to
retrieve data from relational databases. The process
of conversion of NL to SQL is divided into step by
step levels. For example morphology deals with the
meaning of smallest part of word. Lexical Level deals
with sentence structure and tokenization. Here we
also deal with the possible meaning and extract the
one which is suitable for this use programmatic
knowledge. Semantic and syntactic deals with one

95

Muhammad Rizwan
Khwaja Fareed University of
Engineering and IT
rizwan2phd@gmail.com

the limit of sentence but in some scenario the exact
meaning comes beyond the limit of one sentence.

2. Related work

In this section we review the existing work
regarding NL to SQL conversion.

2.1. Midway Query Generation

An already proposed system changes English
statement enter by novice user in all midway query.
So users can choice a one of that intermitted query
[1] to find which one is more close to her
requirement. After selection of final requirement,
system fairs a SQL query. If any error occurs in
system then user often frizzed. To overcome this
problem writer gives a recommendation framework
in future. Understanding of any language by machine
is a difficult task. For this purpose use parsing rules
which convert any natural language statement into
computer understandable statement.

Generally NLP has following steps to process
Natural language: first one is morphological analysis
in which every single word is analyzed and split
punctuation also. Then Syntactic analysis was checks
the rules of language. If sentence are syntactically
incorrect it will rejected. After syntax semantic are
checked. Sometimes impact of previous sentence
come on the upcoming sentence, it called Discourse
integration and in last Pragmatic analysis phase
comes. System facilitate user insert and delete
value.[1]

2.2. Opportunity of modifies the system

Some systems give opportunity to user that they
extend or modify system in any other language as
English, German, and Greek. Under discussed system
allow user to enter input near the SQL format.
System gets three inputs. Firstly get SQL schema.
Writer gives a specific pattern for make a file of SQL
schema for the system. Second is SQL keys file. This
file contains the relation between word phrases with
SQL keys words. There is also a specific pattern to
write this key file. Third input to the system is user
query. User query enters also in a reserved given
pattern. This is near to SQL query format, but not
exact. [2]

After entering first two inputs in the system,
Lexical Analyzer analyzes them. After that Lexical
Analyzer give its output to the Syntax Analyzer. User
query is also an input of Syntax Analyzer. Syntax
Analyzer checks both inputs. After checking final
process was held and SQL query is generated. Writer
also makes it feasible about the extension process of
the system. In which, system is extended easily in
other languages also. For this proved a Key words
file to the system. This file maps word phase of that
language with SQL key words. And the remaining
process are same as discussed earlier.[2]

2.3. Conversion of Urdu question into SQL

NLIDBs are one of the mechanisms which
accomplish this task. User give input to NLIDB in its
daily routine language and the answer is also given in
same language. Authors discuss NLIDB for Urdu
language. Algorithm discuss in this paper is
efficiently maps the given Urdu question into SQL
queries. Discuss algorithm implemented in c#.NET
and test on student Information System and
Employee Information System [3].

In this paper writer discuss some requirement of
natural language interface to database. The query
placed by user is either a request or question.
Presented system evaluation the query must match
one given category. It is also important to identify the
rule of parameter in query. Parameters are table
attribute values. Division of sentence is important for
the understanding of computer. The parts of sentence
are called tokens. To divide the sentence into tokens
in called token formulation. After token formulation
the process come is syntactic markers to make query
semantically correct it is important to define and
remove syntactic markers. It is important to extract
the necessary parameters, for the successful

96

translation of query. These parameters are table
name, attributes and value.

Parser identifies the parameters and constructs.
Construction of dictionary is important which keep
the synonyms of columns and tables names. Inclusion
of synonyms makes it possible for user to write a
sentence in different natural way. The main propose
of the constructed system is to track the correctness
of query semantically. For this propose constructed a
semantic dictionary. [3]

2.4. Natural Language Interface for DB

Generally computers are used to storing data and
retrieve data according to the need requirement of the
user. For the retrieval of data from the data base user
employed SQL Language. If anyone works in
relational databases then he/she must know SQL
query structure how to write a query in SQL. Causal
users don’t know how to write query in database.
Here writers proposed a Web Database System which
creates an ease for novice user to access data from
the database. Without having knowledge about SQL
or internal structure of database, user just write query
in natural Language and the system convert it into
SQL query. Retrieve data and show result in natural
language. This system gives a suitable answer for
single database. This system restricted user to give
input in a specific pattern. For example users enter a
question system check that words are comprised in
data dictionary of system if yes then further proceed
and if not then show a massage to the user enter a
right question. This is relevant to the database or data
dictionary. After this, entering a correct form of
input, system creates tokens of the input and removes
extra words. There are some rules already defined.
After removing extra words system mapping with
that rules when rules are mapped a SQL query is
created and run in the system and retrieve a required
data from the database. And show arranged result to
the user. [4]

3. Scope of Proposed System

In this paper we propose a generic system for NL
to SQL conversion. Firstly we present the scope of
the system for better understanding of proposed
system architecture which is presented later on. As
we know that scope of the system is very important
to accurately understand the working of the system.
Our system would work best by fulfilling the
following constraint / scope w.r.t database and its
schema:

1. System accepts only English language
query.

2. Table names and column names should
be complete English words within
database schema. It should not be
abbreviation or short word as it
decreases the efficiency and accuracy
of proposed system.

3. If any schema entity name is
multiword, it should be connected with
underscore.

4., Multiword name
maximum two words.

5. Columns name should be unique
within the schema.

6. System can accept only single line
input query which can be extendable in
future work.

should have

4. Proposed System architecture

First we present architectural diagram of the
proposed system as under:

input GuI

Tokenization

of C
words of
unwanted
words

A

Lemmatization of
token& Scheme

|

Bigram & Reverse Dictionary
bigram generation of
Synonyms

Query Verification /
Mapping with
Schema

Predefined
Parsing
Rules

Tagging

l

Query Generation

Figure 1: Schema Independent NL to SQL
System Architecture

97

As we can see the Figure 1, proposed system
architecture is divided in this sequence of steps
mention as follows:

e Tokenization

e Removal of unwanted words

e Lemmatization of query tokens as well as
schema entities

e Generation of word bi-gram entities and
their reverse combination

e Query verification / Mapping with schema

e Tagging

e Query generation

5.1. Tokenization

In tokenization phase we break text stream into
single word tokens. Upcoming phases require
morphology processing so we need to break up user
input query into lexemes or single word tokens so
that we could deal with each token separately. At this
stage we not only tokenize the user input but also the
schema entities name. Tokenization is very essential
part of NLP. It helps to understand semantics of
smallest parts of a sentence. Entered query spilt into
single word tokens, for further processing. Consider
the following example user input:

“Find out employees name whose salary is equal
to 5000”

After tokenization, we will have following tokens
with their corresponding indexes.

Table : 5.1

Token | Find | Out | Employees | Name | Whose | Sala
Index |1 2 |3 4 5 6

is | equal [To | 5000
718 9 |10

The reason for generating index is that later on we
can refer these tokens w.r.t to their index and this
approach would also help to implement this system
as well.

5.2. Removal of unwanted words

User enters query in natural language (we consider
English language; other languages are not in the
scope of this paper). After tokenization, the proposed
system removes the unwanted words in the question
from the user query. Only those words would remove
which have no semantic importance regarding NLP
to SQL query conversion. After filtering unwanted
words e.g. and, or, is etc which should be predefined
in “Escape Word Dictionary” this phase gives output
as under for the same query cited in previous phase.

Table. 5.2
Token | Find | Out | Employees | Name | Whose | Salary | equal | 5000
Index |1 2 |3 4 5 6 8 10

Here token number 7 and 9 has been removed as
they are escaped words.

5.3. Lemmatization of tokens and schema

As it is very difficult to exactly match the words
with different forms so we need to perform
lemmatization before any verification with schema.
Lemmatization means to cut off the last part of the
word which occur in different shapes & spellings, so
that all form of the word within particular text would
be same.

e.g.

am, are, is > be

Car, Cars, Car’s > Car

The target schema keywords also need to convert
in lemmatized form so that the verification process in
the upcoming verification phase would give us the
maximum accuracy. Now by applying the
lemmatization on Table 5.2, the output table would
be as under:

Table :5.3

Token | Find | Out | Employee | Name | Whose | Salary |equal | 5000
Index |1 2 13 4 5 6 8 10

Form above table we can see that Employees
converted to Employee after lemmatization, and rest
of the words already in lemmatized form, so there is
no change in these words.

5.4.Generation of Bi-Gram and Reverse Bi-
Gram

In our scope we already mentioned that schema
entities having two words attributes or table name are
allowed. So in the upcoming verification phase we
also need to match bi-gram query tokens with bi-
gram database schema entities tokens. We will
generate dictionary of Bi-gram and their reverse
combination. The bi-gram tokens of synonyms would
also be generated. The wordnet can be very handy for
this task[8]. e.g.

Table 5.4 .Bi-Gram from Query Tokens

5.5.Query verification / mapping with
Schema

In this phase we have to verify schema entities
tokens (table names and column name) as per the
output of previous phase with the query tokens. We
also extract synonyms of each lemma and make
lemma dictionary of use input. We then generate bi-
gram and their reverse combination lemma and add
in the dictionary too. After that we verify each token
Bi-grams and their combination with the lemmatized
schema. So that we can identify the columns and
tables name in the user input. We tag each column
and table in the input which is exactly matched with
the lemmatized schema.

5.6. Tagging

After verification we tag lemmatized tokens for
the use of next phase and to identify context of that
particular token with schema. Tagged can be done
with respect to three ways:

i. Attribute or Column tag
il. Table tag
iil. Index Number

Attribute tag shows that word is an attribute or
column in that schema, table tag shows that word
exist in the schema as table. Index number shows the
indexing number in tokenized array. e.g

Table 5.6
Token Tags
Employee Name Attribute
Employee (Table Name)
3 4 (index number)

Table 5.7

Token Tags

Salary Attribute

Employee (Table Name)

6 (index number)

find_ou [out_employe [employee nam [name whos [whose salar
t e e e y

12 23 34 45 56

salary equal |equal 5000

68 8 10

Table 5.5. Reverse Bi-Gram of Query Tokens

out_find [employee out [name employee |[whose name |salary whose

21 32 43 54 65

equal_salary |5000_equal

8 6 10 8

From table 5.6 & 5.7, we can see that we assign
each uni-gram and bi-gram token to their
corresponding tags after verification. These
tagged tokens would be the output of this phase and
would help to make actual SQL query fragments
against the user input in upcoming phase. We also tag
numbers as “cardinal number”.

There are many scenarios in natural text which
can be tagged / identified by using state-of-the-art
NLP algorithms and tools such as Apache Open NLP
[5], Stanford NLP [6], LingePipe [7] which provides
implementation of state-of-the-art algorithms of
tokenization, POS tagging, sentence splitting, named
entity extraction and different NLP task. Form future

point of view, we can also tag named entities (date
time and place), conditional words and booster words
as the field of NLP has significant success and
accuracy in these areas.

5.7 Query Generation

5.7.1. Fragment Creation

In this phase different fragments of SQL query are
generated against the natural language query.

SQL query “where” part is extracted and matched
from each fragments and their corresponding rules. In
this phase, we create fragments which consist of
tagged words and suffix and prefix of tagged word.
We do not include suffix and prefix if it is another tag
word. Tag word in the query which refers to the
column or table of target schema.

5.7.2. Query Parts Creation

In this phase we try to create different query parts
from fragments. FROM parts is identify based on
table tagged tokens. If multiple tables exist then we
try to join them based on some common attribute
between two successive tables. If no table exists then
we try to match attribute in all table of schemas.

“Select” part of SQL query is extracted based on
all attribute tagged tokens. If there is no tagged
attribute then * is considered as select part. The
“select” and “from* clause can be extracted by the
help of tagged attributes and tagged tables.

5.7.3. Parsing Rules Mapping

We create some morphological rules. We map
these rules with tagged input. We extract different
fragment from the input which match according the
rules. There are different types of fragments like
WHERE clause, SELECT clause, FROM clause. The
following table shows the rules for “where” clause of
SQL query.

Table 5.8

Scenario SQL condition | <4> stands
1 | <A><CN> <A> = <CN> for attribute
2 | <A>greater <A>><CN> | SCN> stands

than<CN> for cardinal

number

3 | <A>less than<CN> <A><<CN> | gy~
4 | <BW><A> <BW><A> stands for
5 | <A>equal to<CN> <A>=<CN> booster word

From table 5.8, we can see that what possible
parsing rules can be extracted from user natural text
input.

99

According to each fragment and its type we
generate SQL fragments. By combing all SQL
fragments we can finally generate complete SQL

query.
6. Conclusion

This paper shows that the concept of NL to SQL
query conversion in broader scope w.r.t multiple
database schemas support because other existing
system depend on specific single schema which
narrow their scope but our proposed system works
schema independently. System gets input in plain
English language. User is not restricted to follow any
pattern. Advancement in this field can give benefit to
large number of novice user or businessman who
wants to directly explore their organization databases
without technical knowledge of SQL.

In future work we try to modify the architecture so
that it might have multilingual support and more
sophisticated morphological rules with latest NLP
advancement which can map more SQL fragment
like “group by” & “order by” etc as well.

7. References

[1] Bhadgale, Anil M., et al. "Natural language to SQL
conversion system." IJCSEITR 3.2 (2013): 161-6.

[2] Papadakis, Nikos, Pavlos Kefalas, and Manolis
Stilianakakis. "A tool for access to relational databases in
natural language." Expert Systems with Applications 38.6
(2011): 7894-7900.

[3] Ahmad, Rashid, Mohammad Abid Khan, and Rahman
Ali. "Efficient Transformation of a Natural Language
Query to SQL for Urdu." Proceedings of the Conference on
Language & Technology. 2009.

[4] Alexander, Rukshan, Prashanthi Rukshan, and
Sinnathamby Mahesan. "Natural Language Web Interface
for Database (NLWIDB)." arXiv preprint arXiv:1308.3830
(2013).

[5] OpenNLP, Apache. "a Machine Learning Based Toolkit
for the Processing of Natural Language Text." URL
http://opennlp. apache. org (Last accessed: 2016-09-18).

[6] Manning, Christopher D., et al. "The Stanford CoreNLP
Natural Language Processing Toolkit." ACL (System
Demonstrations). 2014.

[7] Carpenter, Bob, and Breck Baldwin. "Text analysis
with LingPipe 4." LingPipe Inc (2011).

[8] Pedersen, Ted, Siddharth Patwardhan, and Jason
Michelizzi. "WordNet:: Similarity: —measuring the
relatedness of concepts." Demonstration papers at HLT-
NAACL 2004. Association for Computational Linguistics,
2004.

